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We derive an eigenvector-following technique for locating transition points in anN-dimensional energy
landscape. A separate Lagrange multiplier is used for each eigendirection to provide maximum flexibility in
determining step sizes. In contrast to previous techniques based on a similar approach, we provide a simple
algorithm for choosing specific values of these Lagrange multipliers. We demonstrate the robustness of the
algorithm using two-dimensional Cerjan-Miller and Adams landscapes. The technique has also been applied
to the S12 molecular cluster.

1. Introduction

The investigation of energy landscapes is of critical impor-
tance to many of the most challenging problems in chemical
physics, including the study of molecular clusters,1-4 biomol-
ecules,4 supercooled liquids,5-10 and structural glasses.4,11-13 An
energy landscape itself consists of many peaks and valleys in a
multidimensional configuration space. Energy minima cor-
respond to mechanically stable configurations of the system and
are often termed inherent structures.9 Transitions between
minima govern such important properties as reaction kinetics,
protein folding dynamics, and glass transition range behavior.4-9

Although it is straightforward to locate energy minima using
geometry optimization,14,15 the search for transition points has
proved much more challenging.4,15

A transition point is formally defined as a stationary point
where precisely one of the eigenvalues of the Hessian matrix is
negative.4 Thus, a transition point corresponds to an energy
maximum in one eigendirection and an energy minimum in all
other eigendirections. Many methods for finding transition states
have been proposed on the basis of an eigenvector-following
technique, in which the second derivatives of the energy function
are used to construct a Hessian matrix.1,4,15-21 The eigenvector-
following technique is useful for finding likely transitions from
a particular minimum to adjacent minima without having
a priori knowledge of these neighboring minima. This technique
is particularly relevant in kinetic Monte Carlo22 and other types
of dynamic simulations involving energy landscapes.

Previous eigenvector-following methods have employed a
Lagrange formalism to constrain the walk from an energy
minimum to a transition point. Though initial techniques
employed just a single Lagrange multiplier,16-21 a significant
improvement by Wales1 made use of a separate Lagrange
multiplier for each eigendirection.

In this paper, we present an extension of the Wales eigen-

vector-following technique using a simplified choice of Lagrange
multipliers based on rigorous geometrical arguments. We also
provide a clear derivation of the eigenvector-following technique
in the Lagrange formalism. We then outline an algorithm for
implementing our simplified eigenvector-following method and
show applications with the two-dimensional Cerjan-Miller16

and Adams21 landscapes, where the technique is shown to be
remarkably robust, even with large step sizes. Finally, we use
the algorithm to find transition states in an S12 cluster.

2. Derivation

Consider anN-dimensional energy landscape,

with the generalized position coordinatesx1, x2, ...,xN. Equation
1 may denote a potential energy, free energy, enthalpy, or other
type of landscape. In a particle-based system such as in
molecular mechanics simulations, the number of dimensionsN
is typically three times the number of particles, minus any
constraints.

If the energy of the system at an initial positionxi
0, where

i ) 1, 2, ...,N, is given byE(xi
0), then we may approximate the

energy at a new positionxi ) xi
0 + hi using the Taylor series

expansion,

This can be written in matrix notation as

where the positionx and displacementh ) x - x0 vectors are
given by

E ) E(x1,x2,...,xN) (1)

E(xi) ≈ E(xi
0) + ∑

j)1

N ∂E

∂xj
|
xij)xij

0
hj +

1

2
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N

∑
j)1

N
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∂
2E
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|
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E(x) ≈ E(x0) + gTh +1
2
hTHh (3)
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respectively. The gradient vectorg andN × N Hessian matrix
H, evaluated atx ) x0, are given by

and

respectively. The Hessian matrix is symmetric by construction.
2.1. Newton-Raphson Method.In an unconstrained system,

the Newton-Raphson method can be used to locate a stationary
point in the energy landscape.14 On the basis of eq 2, a stationary
point must satisfy

or, more compactly,

In matrix notation, we have

so that the Newton-Raphson step is given by

We now definebk andVk as the eigenvalues and associated
eigenvectors of the symmetric Hessian matrix,

where the eigenvectors are normalized and satisfyV j
TVk ) δjk.

Because the eigenvectorsVk form a complete set, we can express
the gradient vector as

Substituting this expression into eq 10, we obtain

The change in energy after taking the Newton-Raphson step
is

Substituting in eqs 12 and 13, we obtain

Hence, a positive eigenvaluebj > 0 leads to a decrease in energy
along the associatedVj eigendirection, and a negative eigenvalue
bj < 0 leads to an increase in energy along its associated
eigendirection.

2.1.1. Newton-Raphson in One Dimension.To understand
the implications of the Newton-Raphson method, let us
consider the simple one-dimensional landscapes in Figure 1. In
one dimension, the Newton-Raphson step in eq 13 simplifies
to

and the change in energy in eq 15 becomes

Consider point A in Figure 1, where the gradient∂E/∂x is
negative and the curvature∂2E/∂x2 is positive. On the basis of
eq 16, this leads to a positive Newton-Raphson step,h > 0,
driving the system to the right of A and toward the minimum
in energy. Appropriately, the change in energy associated with
the Newton-Raphson step, given by eq 17, is negative. If we
take a Newton-Raphson step starting from point B, we see
that ∂E/∂x> 0 and∂2E/∂x2 > 0. Hence the Newton-Raphson
step from point B is leftward, again driving the system toward
the minimum in energy. Hence, the sign of∆E depends only
on the sign of the curvature,∂2E/∂x2: a positive curvature leads
to a decrease in the energy of the system, and a negative
curvature leads to an increase in energy.

Performing a similar analysis for points C and D in Figure
1, we see the Newton-Raphson step again drives that system
toward a stationary point, but in this case it is a maximum rather
than a minimum in energy. This is in agreement with eq 17,
which predicts an increase in energy when starting from a point
of negative curvature. Finally, if we consider a step from point
E or F, we see that the Newton-Raphson method drives the
system toward any type of stationary pointsit need not be an
absolute minimum or maximum in energy.

2.2. Lagrange Approach.A transition point is a stationary
point where exactly one eigenvalue of the Hessian matrixH is
negative. In other words, a transition point corresponds to an
energy maximum in one direction and an energy minimum in
all other directions. Whereas the Newton-Raphson method
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finds any type of stationary point, we wish to constrain ourselves
to just these first-order transition points. Following the approach
of Wales,1 we define the Lagrange function

whereci are the desired step sizes in the various directions and
λi are Lagrange multipliers. Substituting eq 2 into the above
expression and taking the derivative ofL with respect to an
arbitrary stephk yield

In matrix notation, we have

whereλ is a diagonal matrix given by

Solving for h in eq 20 and substituting eq 12 for the gradient,
we obtain

The associated change in energy is

Hence, the sign of the energy change in a particular eigendi-
rectionV j depends on both the eigenvaluebj and the choice of
Lagrange multiplierλj.

2.2.1. Lagrange Approach in One Dimension.Let us again
consider the simple one-dimensional landscapes in Figure 1 to
understand the role of the Lagrange multipliers in eqs 22 and

23. In one dimension, these equations reduce to

and

If we want to minimize the energy, thenλ - b/2 < 0, or λ
< b/2. Starting from point A, we wish to haveh > 0 to move
in the appropriate direction. Because the gradient is negative at
this point, eq 24 leads to the conditionλ - b < 0, or λ < b.
Becauseb > 0 at point A, we must therefore chooseλ < b/2 to
satisfy both conditions.

Let us now suppose that we wish to minimize the energy
starting from point B. The same condition,λ < b/2, holds from
eq 25. From eq 24, we have the conditionλ < b becauseF >
0 and we wish to haveh < 0 from this point. Because we are
still in the regime ofb > 0, we must again chooseλ < b/2 to
both decrease energy and move in the leftward direction. Hence,
the conditionλ < b/2 for energy minimization is the same for
both points A and B.

Suppose now that we wish to maximize the energy starting
from point A. From eq 24, we haveλ - b/2 > 0, or λ > b/2.
From eq 24, we haveλ - b > 0, or λ > b. Becauseb > 0, we
must have the conditionλ > b. A similar analysis starting from
point B gives the same result.

Now let us consider points C and D, whereb < 0. For energy
minimization we obtain the conditionλ < b, and for energy
maximization we haveλ > b/2. Thus, for any arbitrary value
of b, we may walk downhill on the energy landscape withλ <
-|b| and uphill withλ > |b|.

2.2.2. A Simplified Choice of Lagrange Multipliers.Let us
now return to ourN-dimensional energy landscape. We may
rewrite eq 23 as a summation of energy changes in the various
eigendirections:

where

Suppose we wish to find a transition point by maximizing energy
in a particularV i direction while minimizing energy in all of
the orthogonalV j*i directions. It follows from our analysis in
section 2.2.1 that a choice ofλi > |bi| and λj < -|bj| would
guarantee a step in the correct direction. However, it specifies
neither the particular values ofλi,j nor the magnitude of the step.

We may simplify our analysis by assuming that a transition
point search always starts from a local minimum in the energy
landscape. This is also the most practical case to consider from
an applications point of view, because we are typically interested
in finding the transition energy between two stable configura-

Figure 1. Model one-dimensional landscapes. The Newton-Raphson
method always drives the system toward a stationary point.
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tions, e.g., reactant and product in chemical kinetics or two
inherent structures using Stillinger’s terminology.9 A minimum
in the potential energy landscape has the propertybk > 0 for
all k ) 1, 2, ...,N. As we walk on the potential energy landscape
from the minimum to a transition point, we are essentially
walking uphill along a valley or streambed. If the direction of
our walk up the streambed isV i and the step size is sufficiently
small, we should havebj > 0 for all j*i and be near the energy
minima in theV j*i directions along the entire walk. In the case
of an infinitesimal step size, we would exactly follow the
streambed; however, due to finite step sizes, we may have slight
deviations from the streambed. These deviations may be
corrected by an appropriate choice ofλj*i, which is accomplished
by finding the nearest stationary point in the∆Ej*i contribution:

leading toλj*i ) 0.
The choice ofλj*i ) 0 reduces our Lagrange approach to

exactly the Newton-Raphson method in allVj*i eigendirections,
and it is in agreement with our previous condition ofλj*i <
bj*i/2 for energy minimization withbj*i > 0. Note that if we
accidentally step outside of the regime wherebj*i > 0, a negative
λj*i < bj*i should be chosen. (This also indicates that the chosen
step size in theV i eigendirection is too largesso large that we
have effectively stepped out of the streambed and started
climbing hills in an orthogonal direction.)

The magnitude of the step size along theV i eigendirection is
given by

This leads to the condition

Becauseλi > bi is required for energy maximization withbi >
0, we choose

for this case. This is also the appropriate choice ofλi for bi )
0. The step sizescj*i in the other directions are fixed bycj*i )
|Fj/bj|. The total step size is thus

If we are close to the energy minima in theV j*i eigendirections,
thenFj*i ≈ 0 such that

Any deviation fromhTh ) ci
2 is a result of having finite values

of Fi*j
2.

As we progress up the streambed, eventually we will pass
through an inflection point wherebi becomes negative. The
condition for energy maximization withbi < 0 is λi > bi/2.

Because in this case the nearest stationary point is the transition
point of interest with exactly one negative eigenvaluebi, the
most efficient choice of Lagrange multiplier isλi ) 0,
corresponding again to the Newton-Raphson step of eq 13.
Thus in the case ofbi < 0, the step sizeci is determined by the
Newton-Raphson method.

Finally, we note that the first step from the initial minimum
point must follow a different scheme than that given by eq 29
becauseFi ) 0. In this case, we choose a simple step of
magnitudeci in the V i eigendirection. There should be no
components ofh in the otherV j*i eigendirections because we
also haveFj*i ) 0 and wish to remain in the streambed.

3. Algorithm

We now provide an algorithm for implementing the above
Lagrange approach for finding transition states.

1. Starting at a minimum point in the energy landscape,
compute the Hessian matrix and determine its eigenvalues and
normalized eigenvectors. Choose the eigenvectorVi correspond-
ing to the direction of interest, typically that of the “softest
mode,” i.e., that corresponding to the smallest eigenvalue.
(Higher-order modes can be chosen to locate other transition
states adjacent to the current energy minimum. These transition
points are likely to be of higher energy than that corresponding
to the softest mode. In techniques such as kinetic Monte Carlo,
it is desirable to obtain a thorough list of transition states
available from a given minimum.)

2. Step in the direction of the eigenvectorV i of interest using
a desired magnitudeci. This initial steph should have no
components from the otherV j*i eigendirections. When a
complete list of transition points is mapped out, a second search
should be initiated in the opposite-V i direction.

3. Compute the gradientg and HessianH at the new point,
and determine the eigenvalues and normalized eigenvectors of
the new Hessian matrix. Choose the eigenvaluebi of interest,
typically the smallest, and its corresponding eigenvectorV i. The
eigenvectors form the columns of anN × N unitary matrix:

4. Compute the vectorF ) UTg. Note that this is just eq 12
whereFk are the components ofF.

5. Choose the Lagrange multipliersλj*i ) 0 corresponding
to the Newton-Raphson step for all directions orthogonal to
V i. If bi g 0, chooseλi ) bi + |Fi/ci|, whereci is the desired
step size in theV i direction. If bi < 0, chooseλi ) 0. (Note
that the choice ofλj*i ) 0 assumes that we are sufficiently close
to the streambed such thatbj*i > 0. If bj*i e 0, the desired step
size ci is probably too large. This can be corrected by either
choosing a smaller value ofci or by choosingλj*i < bj*i.)

6. Compute the step

and update the system coordinatesx appropriately.
7. Repeat steps 3-6 until converged at a transition point.

The criterion for convergence is|Fi| < ε, whereε is chosen to
reflect the desired level of precision.

We note that some previous techniques have incorporated a
dynamically variable maximum step size, which may be
combined with a trust radius.4 In our algorithm, the step size in
the bi g 0 regime is controlled by theci parameter, which is
user-definable. However, in thebi < 0 regime the step size is
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governed entirely by the values ofFi and bi to choose an
optimum step toward the transition point. We also note that for
large atomistic systems, it may be undesirable to compute or
diagonalize the Hessian matrix. In this case, hybrid techniques
exist for estimating the smallest Hessian eigenvalues and
corresponding eigenvectors.4

One final consideration for atomistic systems is that transla-
tion or rotation of the entire simulation cell leads to zero Hessian
eigenvalues, making inversion of the Hessian matrix impossible.
However, this problem may be avoided by either changing to a
minimal set of internal coordinates4 or using an eigenvalue-
eigenvector solver that does not rely on explicit matrix inversion,
such as the excellent Template Numerical Toolkit.23

4. Examples

As a first example of the above algorithm, let us consider
the two-dimensional Cerjan-Miller energy function,16

The minimum energy is located at the origin, and the two
transition points are located symmetrically at (x, y) ) (( 1, 0).
To provide a difficult test for our algorithm, we choosea ) 1,
b ) 1/2, and c ) 1, which gives the softest mode in they
direction. Figure 2 shows a contour plot of the Cerjan-Miller
function with transition point searches shown for four different
step sizes: 0.1, 0.2, 0.5, and 1.0. Choosing an initial step in the
+y direction, all four cases converge upon the left transition

point at (-1, 0). If the opposite-y direction is chosen for the
initial step, then the algorithm converges symmetrically to the
right transition point at (1, 0). Figure 2 shows that a shorter
step size leads to a more direct path to the transition point, but
it can be less efficient because a greater number of steps are
required. The fact that even the relatively large step size of 1.0
leads to convergence illustrates the robustness of the algorithm,
even when the initial step is chosen in what is essentially the
wrong direction. Note that in all four cases shown in Figure 2,
the step size is determined solely by the Newton-Raphson
method after leaving the regime wherebi g 0.

For a second example, we consider the Adams function,21

Starting from the minimum at the origin, we locate the two
transition points at (2.4104, 0.4419) and (-0.1985,-2.2793).
Results are shown in Figure 3 using an initial step size of 2.0.
The two transition points are found by starting in opposite
directions along the softest mode. The first transition point at
(2.4104, 0.4419) is found in seven steps, and the second
transition point at (-0.1985,-2.2793) is found in only four
steps, a vast improvement over prior eigenvector-following
techniques.21

As a final example, let us consider the more complicated case
of an S12 molecular cluster. We employ the ab initio potentials
of Mauro and Varshneya24 for sulfur, which include two-, three-,
and effective four-body terms. A portion of the potential energy

Figure 2. Contour plot of the two-dimensional Cerjan-Miller function of eq 36, usinga ) 1, b ) 1/2, andc ) 1. Starting from the minimum at
(x, y) ) (0, 0), we find the transition points at ((1, 0) using a step size of (a) 0.1, (b) 0.2, (c) 0.5, and (d) 1.0. Solid lines indicate an initial step
in the +y direction, and dashed lines indicate an initial step in the-y direction.

ECM(x,y) ) (a - by2)x2e-x2
+ c

2
y2 (36)

EA(x,y) ) 2x2(4 - x) + y2(4 + y) - xy[6 - 17e-(1/4)(x2 + y2)]
(37)
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landscape, including three inherent structures (A, B, and C) and
two transition points (D and E), is shown in Figure 4. Inherent
structures A and B correspond to the two well-known ring
conformations for S12.25 The S12 cluster may transition between
these configurations through transition point D. A third inherent
structure with higher energy is the chain configuration of point
C in Figure 4. To transition between ring and chain structures,
the S12 cluster can pass through transition state E. In our
simulations, the simplified eigenvector-following technique is
able to locate transition points D and E with about 50% fewer

iterations than previous techniques that use the same number
of Lagrange multipliers.4 We have also used our simplified
eigenvector-following technique to give complete mappings of
the potential energy landscapes of other elemental and hetero-
geneous chalcogen clusters,26 including Se3-Se8, (S,Se,Te)8, and
Sen(S,Te)8-n. From our experience, the simplified choice of
Lagrange multipliers provides for a more optimum step vector
h than previous techniques4 and consequently leads to conver-
gence in roughly 40-50% fewer iterations.

5. Conclusions

We have derived an eigenvector-following technique for
locating transition points in an energy landscape. Our method
is based on maximizing energy in one eigendirection of interest
while simultaneously minimizing energy in all orthogonal
directions. We have outlined an algorithm for implementation
of this technique and demonstrated its robustness using the two-
dimensional Cerjan-Miller and Adams landscapes. The tech-
nique has also been successfully applied to realistic molecular
clusters, including S12. This method for locating transition points
should be useful in computing reaction kinetics and transition
probabilities in a wide range of fields, including the study of
molecular clusters, biomolecules, and structural glasses.
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Figure 3. Contour plot of the two-dimensional Adams function of eq
37. Starting from the minimum at (x, y) ) (0, 0), we find the two
transition points at (2.4104, 0.4419) and (-0.1985,-2.2793). The initial
step size is chosen to be 2.0, and the initial step is taken in opposite
directions along the softest mode.

Figure 4. A portion of the potential energy landscape of S12, including
three inherent structures (A, B, and C) and two transition states (D
and E).
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