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We derive an eigenvector-following technique for locating transition points itN-alimensional energy
landscape. A separate Lagrange multiplier is used for each eigendirection to provide maximum flexibility in
determining step sizes. In contrast to previous techniques based on a similar approach, we provide a simple
algorithm for choosing specific values of these Lagrange multipliers. We demonstrate the robustness of the
algorithm using two-dimensional CerjaiMiller and Adams landscapes. The technique has also been applied

to the S, molecular cluster.

1. Introduction vector-following technique using a simplified choice of Lagrange
multipliers based on rigorous geometrical arguments. We also
X - -, provide a clear derivation of the eigenvector-following technique
tance to many of the most challenging problems in chemical : . . .

in the Lagrange formalism. We then outline an algorithm for

physics, including the study of molecular clustrsbiomal- implementing our simplified eigenvector-following method and
At 10 1-13 -
ecules} supercooled liquids, " and structural glasses " *An show applications with the two-dimensional Cerjaliller 6

energy Iandgcape |tself consists of many peaks anq \(alleys " & nd Adama! landscapes, where the technique is shown to be
multidimensional configuration space. Energy minima cor- remarkably robust, even with large step sizes. Finally, we use
respond to mechanically stable configurations of the system and,[h | 't%m t fiﬁd transition states in SI. ter Y,
are often termed inherent structufedransitions between € algor 0 anstlion states in ag,Sluster.
minima govern such important properties as reaction kinetics
protein folding dynamics, and glass transition range behavfor.
Although it is straightforward to locate energy minima using ~ Consider arN-dimensional energy landscape,

eometry optimizatioA}15the search for transition points has _
groved rﬁucph more challengirg® P E = B0 @)

A transition point is formally defined as a stationary point with the generalized position coordinatgsxs, ..., Xn. Equation
where precisely one of the eigenvalues of the Hessian matrix is1 may denote a potential energy, free energy, enthalpy, or other
negative! Thus, a transition point corresponds to an energy type of landscape. In a particle-based system such as in
maximum in one eigendirection and an energy minimum in all molecular mechanics simulations, the number of dimendibns
other eigendirections. Many methods for finding transition states is typically three times the number of particles, minus any
have been proposed on the basis of an eigenvector-following constraints.
technique, in which the second derivatives of the energy function  If the energy of the system at an initial positio}?} where
are used to construct a Hessian matrhé>2! The eigenvector-  j =1, 2, ... N, is given byE(x"), then we may approximate the

following technique is useful for finding likely transitions from  energy at a new position = x° + h; using the Taylor series
a particular minimum to adjacent minima without having expansion,

a priori knowledge of these neighboring minima. This technique

The investigation of energy landscapes is of critical impor-

' 2. Derivation

, _ 1oSe e N 9E 1NN 5E
S e el Morle SN PES  emnd)+ S| e lSSnie]
: . : : 10X =3¢ 255 0%0%15=9

Previous eigenvector-following methods have employed a F106P= =

Lagrange formalism to constrain the walk from an energy This can be written in matrix notation as

minimum to a transition point. Though initial techniques

employed just a single Lagrange multipliér?! a significant E(x) ~ E(x + g'h NI (TR ©)

improvement by Walésmade use of a separate Lagrange 2

multiplier for each eigendirection. where the positiox and displacemerit = x — x° vectors are

In this paper, we present an extension of the Wales eigen-given by
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Xl " he -y (13)
X h = — —
x=|7 h=|2 4) kZ\bk “
N hy The change in energy after taking the Newtd®aphson step
respectively. The gradient vectgrandN x N Hessian matrix '
H, evaluated ak = x°, are given by 1T
E(x) — E(X’) = AE=g'h + Sh'Hh (14)
oE
0%y Substituting in eqs 12 and 13, we obtain
9E 2
g=| %, (5) NF
: AE = —Z— (15)
9E =129
Py [0 Hence, a positive eigenvallbbe> O leads to a decrease in energy
along the associated eigendirection, and a negative eigenvalue
and bj < 0 leads to an increase in energy along its associated
5 ) ) eigendirection.
YE ¥YE | OE 2.1.1. Newtor-Raphson in One Dimensiofio understand
X2 X%, 0%, 0%y the implications of the NewtonRaphson method, let us
2E PE 2E consider the simple one-dimensional landscapes in Figure 1. In
- s one dimension, the NewterRaphson step in eq 13 simplifies
H=|0x0x, 9x, 0%,0Xy (6) to
FE oE VE . ?TE
oo _2 _ _ X =)(0
XXy OXXy X% | o h=-1=- 82E>< (16)
respectively. The Hessian matrix is symmetric by construction. X I x=s0

2.1. Newton—Raphson Method.In an unconstrained system, ) )
the Newtor-Raphson method can be used to locate a stationaryand the change in energy in eq 15 becomes
point in the energy landscap®On the basis of eq 2, a stationary

point must satisfy F? (88_5 x:xo)z
e N Y BZE‘ ho(7) AE:_%:_zaiE— *

Consider point A in Figure 1, where the gradiéi/ox is
negative and the curvatupdE/ox? is positive. On the basis of
N eq 16, this leads to a positive NewtoeRaphson ste > 0,
0=g. + S Hh @) driving the system to the right of A and toward the minimum
K Z kil in energy. Appropriately, the change in energy associated with
: the Newton-Raphson step, given by eq 17, is negative. If we

or, more compactly,

In matrix notation, we have take a NewtorRaphson step starting from point B, we see
that 9E/9x> 0 andd?E/ox? > 0. Hence the NewtonRaphson
0=g+Hh 9) step from point B is leftward, again driving the system toward
the minimum in energy. Hence, the sign AE depends only
so that the NewtornRaphson step is given by on the sign of the curvaturé2E/dx2 a positive curvature leads
. to a decrease in the energy of the system, and a negative
h=-H g (10) curvature leads to an increase in energy.

Performing a similar analysis for points C and D in Figure
1, we see the NewterRaphson step again drives that system
toward a stationary point, but in this case it is a maximum rather
HV. = bV than a minimum in energy. This is in agreement with eq 17,

k= MV (11) ; i i ; ; i
which predicts an increase in energy when starting from a point
of negative curvature. Finally, if we consider a step from point
E or F, we see that the NewtetRaphson method drives the
system toward any type of stationary petit need not be an
absolute minimum or maximum in energy.
N 2.2. Lagrange Approach.A transition point is a stationary
g= ;‘Fka (12) point where exactly one eigenvalue of the Hessian métriz
£ negative. In other words, a transition point corresponds to an
energy maximum in one direction and an energy minimum in
Substituting this expression into eq 10, we obtain all other directions. Whereas the NewteRaphson method

We now defineb, andVy as the eigenvalues and associated
eigenvectors of the symmetric Hessian matrix,

where the eigenvectors are normalized and satigfy = Jj.
Because the eigenvectdrg form a complete set, we can express
the gradient vector as
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Figure 1. Model one-dimensional landscapes. The NewtBaphson
method always drives the system toward a stationary point.

Mauro et al.

23. In one dimension, these equations reduce to

oE
F OX [x=x0
h—/l_b=/1 E (24)
3X2 X=x0
and
o, b of, 19E
i (/1 2) - (;L 2 3X2 ><=><°)
N (A — b)? N FE| | (3)
A=
0X" Ix=x0

If we want to minimize the energy, then— b/2 < 0, ori
< b/2. Starting from point A, we wish to have > 0 to move
in the appropriate direction. Because the gradient is negative at
this point, eq 24 leads to the conditidn— b < 0, orA < b.

finds any type of stationary point, we wish to constrain ourselves Becausé > 0 at point A, we must therefore chooke< b/2 to
to just these first-order transition points. Following the approach satisfy both conditions.

of Wales! we define the Lagrange function

_ 1 2 2
L=—E(X) + 2IZ’li(hi ) (18)

Let us now suppose that we wish to minimize the energy
starting from point B. The same conditioh,< b/2, holds from
eq 25. From eq 24, we have the conditibrx b becausé~ >
0 and we wish to havl < 0 from this point. Because we are
still in the regime ofb > 0, we must again choose< b/2 to

whereg are the desired step sizes in the various directions and both decrease energy and move in the leftward direction. Hence,
/i are Lagrange multipliers. Substituting eq 2 into the above the conditiond < b/2 for energy minimization is the same for

expression and taking the derivative lofwith respect to an
arbitrary stephy yield

N
0=—-g,— Zijhj + A0, (29)
&
In matrix notation, we have
0=—-g—Hh+4h (20)
wherel is a diagonal matrix given by
],l 0 = 0
a=[0 % 0 (21)

0 O e« ,IN

Solving forh in eq 20 and substituting eq 12 for the gradient,

we obtain
N Fy
h= kzlik — kak (22)
The associated change in energy is
4
N ] 2
(23)

AE= ———
le (4 — b)?

both points A and B.

Suppose now that we wish to maximize the energy starting
from point A. From eq 24, we have — b/2 > 0, or1 > b/2.
From eq 24, we havé — b > 0, or1 > b. Becausé > 0, we
must have the conditioh > b. A similar analysis starting from
point B gives the same result.

Now let us consider points C and D, whdre< 0. For energy
minimization we obtain the conditioA < b, and for energy
maximization we havé > b/2. Thus, for any arbitrary value
of b, we may walk downhill on the energy landscape witk
—|b| and uphill withA > |b|.

2.2.2. A Simplified Choice of Lagrange Multipliedset us
now return to ouN-dimensional energy landscape. We may
rewrite eq 23 as a summation of energy changes in the various
eigendirections:

N
AE = Z AE (26)
£

b
2| ]

AE, = b7 (27)

where

Suppose we wish to find a transition point by maximizing energy
in a particularV; direction while minimizing energy in all of
the orthogonaV; directions. It follows from our analysis in
section 2.2.1 that a choice af > |bj| and4; < —|bj| would
guarantee a step in the correct direction. However, it specifies

Hence, the sign of the energy change in a particular eigendi- neither the particular values &f; nor the magnitude of the step.

rectionV; depends on both the eigenvalgeand the choice of
Lagrange multiplier;.
2.2.1. Lagrange Approach in One Dimensidmt us again

We may simplify our analysis by assuming that a transition
point search always starts from a local minimum in the energy
landscape. This is also the most practical case to consider from

consider the simple one-dimensional landscapes in Figure 1 toan applications point of view, because we are typically interested
understand the role of the Lagrange multipliers in egs 22 and in finding the transition energy between two stable configura-
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tions, e.g., reactant and product in chemical kinetics or two Because in this case the nearest stationary point is the transition
inherent structures using Stillinger’s terminoldyi.minimum point of interest with exactly one negative eigenvahyethe

in the potential energy landscape has the propeyty O for most efficient choice of Lagrange multiplier i% = 0,
allk=1, 2, ...,N. As we walk on the potential energy landscape corresponding again to the NewteRaphson step of eq 13.
from the minimum to a transition point, we are essentially Thus in the case df < 0, the step size; is determined by the
walking uphill along a valley or streambed. If the direction of Newton—Raphson method.

our walk up the streambed4 and the step size is sufficiently Finally, we note that the first step from the initial minimum
small, we should havi, > 0 for all j=i and be near the energy  point must follow a different scheme than that given by eq 29
minima in theVj»; directions along the entire walk. In the case becauseF; = 0. In this case, we choose a simple step of
of an infinitesimal step size, we would exactly follow the magnitudec; in the V; eigendirection. There should be no
streambed; however, due to finite step sizes, we may have slightcomponents oh in the otherVj.; eigendirections because we

deviations from the streambed. These deviations may bealso haveFj- = 0 and wish to remain in the streambed.

corrected by an appropriate choicelgf,, which is accomplished
by finding the nearest stationary point in thé&;.; contribution:
0AE._.
=i _
) 0 (28)

=i

leading todj= = 0.

The choice ofl;= = 0 reduces our Lagrange approach to

exactly the Newtort Raphson method in alfj; eigendirections,
and it is in agreement with our previous conditionpf; <

bj-i/2 for energy minimization withb=; > 0. Note that if we
accidentally step outside of the regime whigte > 0, a negative

3. Algorithm

We now provide an algorithm for implementing the above
Lagrange approach for finding transition states.

1. Starting at a minimum point in the energy landscape,
compute the Hessian matrix and determine its eigenvalues and
normalized eigenvectors. Choose the eigenveétaorrespond-
ing to the direction of interest, typically that of the “softest
mode,” i.e., that corresponding to the smallest eigenvalue.
(Higher-order modes can be chosen to locate other transition
states adjacent to the current energy minimum. These transition
points are likely to be of higher energy than that corresponding

Aj=i = bi=i should be chosen. (This also indicates that the choseny,, e softest mode. In techniques such as kinetic Monte Carlo,

step size in thé&/; eigendirection is too largeso large that we

have effectively stepped out of the streambed and started

climbing hills in an orthogonal direction.)
The magnitude of the step size along theeigendirection is
given by

F?

2 2_
(;{i - bi)2

=Ci

(29)

i
This leads to the condition

Fi
h=b x| (30)
G

Becausel; > by is required for energy maximization with >
0, we choose

F
=[] -
G

for this case. This is also the appropriate choicé;dbr b; =

0. The step sizeg; in the other directions are fixed . =

|Fi/bj|. The total step size is thus

Fi2 N sz
+ _—

h'h=——
(4 —b)* =T p?

(32)

If we are close to the energy minima in tWg-; eigendirections,
thenFj ~ 0 such that

i 2

h'h~ —— =g
(i — by

(33)

Any deviation fromh™h = ¢ is a result of having finite values
of Fi¢j2.

it is desirable to obtain a thorough list of transition states
available from a given minimum.)

2. Step in the direction of the eigenvectfrof interest using
a desired magnitude;. This initial steph should have no
components from the othe¥j. eigendirections. When a
complete list of transition points is mapped out, a second search
should be initiated in the oppositeV; direction.

3. Compute the gradierfand HessiarH at the new point,
and determine the eigenvalues and normalized eigenvectors of
the new Hessian matrix. Choose the eigenvdluef interest,
typically the smallest, and its corresponding eigenve¢iomhe
eigenvectors form the columns of &hx N unitary matrix:

U=(Vy V, = VY (34)

4. Compute the vectdf = UTg. Note that this is just eq 12
whereFy are the components &f.

5. Choose the Lagrange multiplieis; = 0 corresponding
to the Newtor-Raphson step for all directions orthogonal to
Vi. If bj = 0, choosel; = bj + |Fi/cj|, whereg; is the desired
step size in the/; direction. If b < 0, choosel; = 0. (Note
that the choice of;; = 0 assumes that we are sufficiently close
to the streambed such that; > 0. If b+ < 0, the desired step
size ¢ is probably too large. This can be corrected by either
choosing a smaller value af or by choosinglj= < bji.)

6. Compute the step

N Fk
h= V,

and update the system coordinakeappropriately.

7. Repeat steps-36 until converged at a transition point.
The criterion for convergence [&i| < ¢, wheree is chosen to
reflect the desired level of precision.

We note that some previous techniques have incorporated a
dynamically variable maximum step size, which may be

(35)

As we progress up the streambed, eventually we will pass combined with a trust radiusin our algorithm, the step size in

through an inflection point where; becomes negative. The

condition for energy maximization withy < 0 is 4; > by/2.

the bj > 0 regime is controlled by the; parameter, which is
user-definable. However, in tHg < 0 regime the step size is
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Figure 2. Contour plot of the two-dimensional CerjaMiller function of eq 36, usinga = 1, b = /,, andc = 1. Starting from the minimum at
(x, y) = (0, 0), we find the transition points ai-(, 0) using a step size of (a) 0.1, (b) 0.2, (c) 0.5, and (d) 1.0. Solid lines indicate an initial step
in the +y direction, and dashed lines indicate an initial step in-thyedirection.

governed entirely by the values &% and b to choose an point at (-1, 0). If the opposite-y direction is chosen for the
optimum step toward the transition point. We also note that for initial step, then the algorithm converges symmetrically to the
large atomistic systems, it may be undesirable to compute orright transition point at (1, 0). Figure 2 shows that a shorter
diagonalize the Hessian matrix. In this case, hybrid techniques step size leads to a more direct path to the transition point, but
exist for estimating the smallest Hessian eigenvalues andit can be less efficient because a greater number of steps are
corresponding eigenvectats. required. The fact that even the relatively large step size of 1.0

One final consideration for atomistic systems is that transla- leads to convergence illustrates the robustness of the algorithm,
tion or rotation of the entire simulation cell leads to zero Hessian even when the initial step is chosen in what is essentially the
eigenvalues, making inversion of the Hessian matrix impossible. wrong direction. Note that in all four cases shown in Figure 2,
However, this problem may be avoided by either changing to a the step size is determined solely by the Newt&aphson
minimal set of internal coordinatésr using an eigenvalue method after leaving the regime whdre> 0.
eigenvector solver that does not rely on explicit matrix inversion,  For a second example, we consider the Adams funéfion,
such as the excellent Template Numerical Todlkit.

EA(xY) = 2¢(4 — X) + Y4 +y) — xy[6 — 17 Ty

4. Examples (37)

As a first example of the above algorithm, let us consider

the two-dimensional CerjanMiller energy function Starting from the minimum at the origin, we locate the two

transition points at (2.4104, 0.4419) an€((1985,—2.2793).
. 2 . C Results are shown in Figure 3 using an initial step size of 2.0.
Ecu(xy) = (2 — by)x’e +§y2 (36) The two transition points are found by starting in opposite
directions along the softest mode. The first transition point at
The minimum energy is located at the origin, and the two (2.4104, 0.4419) is found in seven steps, and the second

transition points are located symmetrically aty) = (& 1, 0). transition point at £0.1985,—2.2793) is found in only four

To provide a difficult test for our algorithm, we chooae= 1, steps, a vast improvement over prior eigenvector-following
= 1/,, andc = 1, which gives the softest mode in tlye techniqueg?

direction. Figure 2 shows a contour plot of the Cerjailler As a final example, let us consider the more complicated case

function with transition point searches shown for four different of an S, molecular cluster. We employ the ab initio potentials
step sizes: 0.1, 0.2, 0.5, and 1.0. Choosing an initial step in the of Mauro and Varshneyéfor sulfur, which include two-, three-,
+vy direction, all four cases converge upon the left transition and effective four-body terms. A portion of the potential energy
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F

iterations than previous techniques that use the same number
/ of Lagrange multiplieré. We have also used our simplified
eigenvector-following technique to give complete mappings of
~ the potential energy landscapes of other elemental and hetero-

geneous chalcogen clustéfsncluding Se—Se;, (S,Se,Te) and

Se(S,Tey-n. From our experience, the simplified choice of
Lagrange multipliers provides for a more optimum step vector
h than previous techniquéand consequently leads to conver-
gence in roughly 4650% fewer iterations.

. 5. Conclusions

[/
; We have derived an eigenvector-following technique for
'2 . locating transition points in an energy landscape. Our method
/ l is based on maximizing energy in one eigendirection of interest
2 1V O A B S Vi while simultaneously minimizing energy in all orthogonal
-2 -1 o 1 2 3 directions. We have outlined an algorithm for implementation

Figure 3. Contour plot of the two-dimensional Adams function of eq O,f this tgchnlque -and QGmonstrated its robustness using the two-
37. Starting from the minimum ax(y) = (0, 0), we find the two dimensional CerjafiMiller and Adams landscapes. The tech-

transition points at (2.4104, 0.4419) ane)(1985,—2.2793). The initial nique has also been successfully applied to realistic molecular
step size is chosen to be 2.0, and the initial step is taken in oppositeclusters, including £. This method for locating transition points
directions along the softest mode. should be useful in computing reaction kinetics and transition
24 probabilities in a wide range of fields, including the study of
’ & molecular clusters, biomolecules, and structural glasses.
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